Remaining days till
IET Radar2015
TUTORIALS
Maria S. Greco

Biography:Maria S. Greco graduated in Electronic Engineering in 1993 and received the Ph.D. degree in Telecommunication Engineering in 1998, from University of Pisa, Italy. From December 1997 to May 1998 she joinedthe Georgia Tech Research Institute, Atlanta, USA as a visiting research scholar where she carried on research activity in the field of radar detection in non-Gaussian background.

In 1993 she joined the Department of Information Engineering of the University of Pisa, where she is Associate Professor since December 2011. She’s IEEE fellow since January 2011 and she was co-recipient of the 2001 IEEE Aerospace and Electronic Systems Society’s Barry Carlton Award for Best Paper and recipient of the 2008 Fred Nathanson Young Engineer of the Year award for contributions to signal processing, estimation, and detection theory. She has been co-general-chair of the 2007 International Waveform Diversity and Design Conference (WDD07), Pisa, Italy, in the Technical Committee of the 2006 EURASIP Signal and Image Processing Conference (EUSIPCO), Florence, Italy, in the Technical Committee of the 2008 IEEE Radar Conference, Rome, Italy, in the Organizing Committee of CAMSAP09, Technical co-chair of CIP2010 (Elba Island, Italy), General co-Chair of CAMSAP2011 (San Juan, Puerto Rico), Publication Chair of ICASSP2014, Florence, Italy, Technical Co-Chair of the CoSeRa2015, Pisa, Italy and Special Session Chair of CAMSAP2015, Cancun, Mexico. She is lead guest editor of the special issue on "Advanced Signal Processing for Radar Applications" to appear on the IEEE Journal on Special Topics of Signal Processing, December 2015, she was guest co-editor of the special issue of the Journal of the IEEE Signal Processing Society on Special Topics in Signal Processing on "Adaptive Waveform Design for Agile Sensing and Communication," published in June 2007 and lead guest editor of the special issue of International Journal of Navigation and Observation on” Modelling and Processing of Radar Signals for Earth Observation published in August 2008. She’s Associate Editor of IET Proceedings – Sonar, Radar and Navigation, Associate Editor-in-Chief of the IEEE Aerospace and Electronic Systems Magazine, member of the Editorial Board of the Springer Journal of Advances in Signal Processing (JASP), Senior Editorial board member of IEEE Journal on Selected Topics of Signal Processing (J-STSP), member of the IEEE Signal Array Processing (SAM) Technical Committees. She's also member of the IEEE AES and IEEE SP Board of Governors and Chair of the IEEE AESS Radar Panel. She's as well SP Distinguished Lecturer for the years 2014-2015, AESS Distinguished Lecturer for the years 2015-2016 and member of the IEEE Fellow Committee.
Maria is a coauthor of the tutorials entitled “Radar Clutter Modeling”, presented at the International Radar Conference (May 2005, Arlington, USA), “Sea and Ground Radar Clutter Modeling” presented at 2008 IEEE Radar Conference (May 2008, Rome, Italy) and at 2012 IEEE Radar Conference (May 2012, Atlanta, USA), coauthor of the tutorial "RF and digital components for highly-integrated low-power radar" presented at the same conference, of the tutorial "Recent Advances in Adaptive Radar Detection" presented at the 2014 International Radar Conference (October 2014, Lille, France) and co-author of the tutorial "High Resolution Sea and Land Clutter Modeling and analysis", presented at the 2015 IEEE International Radar Conference (May 2015, Washington DC, USA).
Her general interests are in the areas of statistical signal processing, estimation and detection theory. In particular, her research interests include clutter models, spectral analysis, coherent and incoherent detection in non-Gaussian clutter, CFAR techniques, radar waveform diversity and bistatic/mustistatic active and passive radars. She co-authored many book chapters and more than 150 journal and conference papers.

Title: Optimum, suboptimum and adaptive coherent detection in non-Gaussian disturbance


Abstract: In high-resolution radar systems, the received disturbance cannot be modelled as Gaussian distributed and the classical detectors suffer from high losses. Aim of this tutorial is then to describe the state-of-the-art approaches to the modeling of non-Gaussian radar clutter echoes and their implications on performance prediction and signal processors design.

After a short first part dedicated to modern statistical and spectral models for high-resolution sea and ground clutter and to the methods of experimental validation using recorded data sets, the tutorial will focus on coherent radar detection in non-Gaussian background. Then, according to the adopted disturbance model, optimum and sub-optimum detectors are derived and their performance analyzed against a non-Gaussian background. Different interpretations of the various detectors are provided that highlight the relationships and the differences among them. Moreover, some discussion is dedicated on how to make adaptive the detectors, by incorporating a proper estimate of the disturbance covariance matrix, in order to guarantee the CFAR behaviour of the detector.

A plethora of results with simulated and real recorded data will be shown.


© Copyright 2015. Beijing Institute of Technology Technical support: Shanghai Tongzhong